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Reinforcement Learning
Regression / Classification

• Load from data

• Calculate loss

• Update model

Reinforcement Learning

• Feed action from model

• receive feedback / reward

• update model 3/49



Reinforcement Learning
Markov Decision Process

MDP =< X,U,D,C >1

• X : State

• U : action (control)

• D : dynamic function :
xt+1 = D(xt, ut)

• C : cost function (negative
reward)

1Another notations widely used in RL is <S, A, P, R>
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Reinforcement Learning
Typical Reward

Go

Win : very big
other : 0

Robotic

Ball in bin : big
Ball falls : -1

Autonomous
2.7845 2.3046

Collision : -1000
keep lane : 1
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Reinforcement Learning
Policy Method

• Policy: ut = π(xt) : Given State, policy tell you the next action.

π∗(xt) = rgmxut
Q(xt, ut),

• Q-function : Long-term reward of specific state and action

Q(xt, ut) =
∞∑︁
t
γtR(xt, ut),

• Value function : V(x) =mxuQ(x, u),
• Bellman Equations:

V(xt) =
∑︁
ut

[︁
R(xt, ut) + γVπ(D(xt, ut))

]︁
.

6/49



Inverse Reinforcement Learning

• RL : Given full MDP, output a policy

• Inverse RL : Given part MDP and policy, output reward function

What if we do not know the policy?

• Learn from expert behavior

• Assume expert behavior has high reward

• Try to learn a reward system met the assumption
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Controlling and planning

• Value function V(xt) =
∑︀∞

t γtR(xt, ut) is hard to approximate.
• Controlling : Find the best control sequence which have

minimum cost
– Not infinite long, typically next couple second.
– Overall cost is sum of cost in each frame.
– Sequence of control and its result is called trajectory.

• Controlling problem always have a given dynamic function.
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Model-based & Model-free

Here, the model means we try to model an RL problem to an MDP.
Model-based

• We try to infer(or given) the
whole MDP include dynamic
/ reward function.

• Based on that model, choose
best policy.

• More explainable.

• Most model in controlling
are model-based.

Model-free

• Part of MDP is unknown.

• Learn optimal policy in one
step

• End-to-end learning.

• Very hard RL problem
typically use model-free
model.
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Control problem in Autonomous Driving

• Goal : predict next control which has minimum future cost
(typically in next 3 second)
• State x = (position, angle, velocity, last control)
• Control u = (next steering, next acceleration)
• Environment State xenv = (lane, other vehicle, speed limit, ...)
• Trajectory τ = (xt, ut) for t in 1:T
• Cost function : Avoid collision, keep in lane, Smooth turn, ...
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Energy-based Model
Formulation

Assume the data distribution p are defined as

p(x; θ) =
1

Z
exp(−Eθ(x))q(x),

where q is the reference distribution of data, typically a Gaussian
white noise distribution, x N(0, σ2Ip).

Z =
∫︁
exp(−Eθ(x))q(x)dx = Eq [exp(−Eθ(x))] ,

is the normalization term, which attends to the constrain∫︀
p(x; θ) = 1.
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Energy-based Model
Training

Fit model by maximum likelihood:

θ = rgmx
θ

Lp(θ) =
1

n

n∑︁
i=1

log p(Xi; θ),

Equivalent to minimize KL(Pdata|pθ), Pdata is the true distribution of
data.
Use gradient descent to train the parameter θ
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Energy-based Model
Examples

Image generation2 Video generation3 3D generation4

2A Theory of Generative ConvNet
3Learning Dynamic Generator Model by Alternating Back-Prop Through Time
4Learning Descriptor Networks for 3D Shape Synthesis and Analysis
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Maximum entropy Inverse Reinforcement Learning

What if the energy term become reward function?

p(τ; θ) =
1

Z
exp(−Cθ(τ)),

• The policy is to choose highest probability:
τ∗ = rgmxτ P(τ)

• The training data is expert trajectory.

• Maximum likelihood = minimum cost for expert trajectory
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Maximum entropy Inverse Reinforcement Learning

How to calculate Z?
This paper only support very small graph. They use dynamic
programming to calculate all different trajectories
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Maximum entropy Inverse Reinforcement Learning

If it become continuous?
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Continuous Inverse Optimal Control

• Z is intractable on continuous and high-dim.

• Use Laplace approximation.

• Second order Taylor expansion.

Costθ(Ũ) ≈ C(U) + (Ũ− U)Cu +
1

2
(Ũ− U)2Cuu

likelihood(θ) ≈
1

2
CTUC

−1
UUCU +

1

2
log | − CUU| −

du
log
(2π),

where cU =
∂Cθ
∂U , cUU =

∂2Cθ
∂U2 .
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Related Works
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Contributions

• Introduce sample-based energy-based model to controlling
– Avoid Laplace assumption (compare to CIOC)

• Introduce Langevin Sampling to sample data.
– Can handle non-linear cost function (iLQR cannot)
– Do not need to calculate second-order derivative (iLQR need)
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Inverse Optimal Control via Langevin Sampling
Goal

Recall

P(τ; θ) =
1

Z
exp(−cθ(τ)),

The probability of taking a trajectory is small if the corresponding
cost is big. The goal of IOC is to find a distribution that best fits the
expert control. In other word, we maximize the log-likelihood on
expert trajectories (τi ∈ Trajobs),

l(θ) =
1

n

n∑︁
i=1

log P(τi; θ) =
1

n

n∑︁
i=1

(−cθ(τi) − log(Z)) .
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Inverse Optimal Control via Langevin Sampling
Learning Algorithm

Sample-based approach : the gradient is,

∂

∂θ
l(θ) =

1

n

∑︁ ∂

∂θ
− cθ(τi) − EP(τ;θ)[

∂

∂θ
− cθ(τi)] ,

because

∂

∂θ
log(Z) =

1

Z

∂

∂θ

∫︁
exp(−cθ(τ))dτ

=
∫︁ 1

Z
exp(−cθ(τ))

∂

∂θ
− cθ(τ)dτ

=
∫︁

∂

∂θ
− cθ(τ)P(τ; θ)dτ

= EP(τ;θ)[
∂

∂θ
− cθ(τi)] . 23/49



Inverse Optimal Control via Langevin Sampling
Learning Algorithm

We approximate the expectation term by sampling,

∂

∂θ
l(θ) =

1

ñ

∑︁ ∂

∂θ
cθ(τ̃i) −

1

n

∑︁ ∂

∂θ
cθ(τi),

where τ̃ is the sampled trajectories and ñ is the number of samples.
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Inverse Optimal Control via Langevin Sampling
Sampling Algorithm

The state in our model can be divided into two parts, vehicle status
xv and environment xe. Modifying control affects the status but not
the environment. For each expert trajectory, we synthesize one
trajectory based on the associated environment. In other words, we
sample from the conditional distribution with fixed environment and
maximize the conditional likelihood,

l(θ) =
1

n

N∑︁
i=1

log P(τi|Xe = xe; θ).

Our sampling algorithm only updates the control, which leads to a
change in status xv.
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Sampling Method
Langevin Dynamic

The iterative process for Langevin Sampling is

Uτ+1 = Uτ −
δ2

2

[︂Uτ

ω2
−

∂

∂U
Cθ(Uτ)

]︂
+ δNoiseτ.

Notice that the state changes as the control is changed; at the same
time, the change of control in the previous frame affects each cost
later. Thus the derivative is calculated by chain rule,

∂

∂ui
Cθ(Uτ) =

T∑︁
i=t

∂Ci
∂ut
=

T∑︁
i=t

∂Ci
∂xi

∂xt
∂ut

i−1∏︁
j=t

∂xj+1
∂xj
+

∂Ct
∂ut

.

26/49



Sampling Method
Langevin Dynamic

The iterative process for Langevin Sampling is

Uτ+1 = Uτ −
δ2

2

[︂Uτ

ω2
−

∂

∂U
Cθ(Uτ)

]︂
+ δNoiseτ.
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Sampling Method
Iterative Linear Quadratic Regulation

Given an initial trajectory, it updates the trajectory by repeatedly
solving for the optimal policy under linear quadratic assumptions.
Let (xit, u

i
t) be the i-th iteration trajectory. The dynamic is known,

xit+1 = f(xit, u
i
t). Define Δxt = xt+1 − xt,Δut = ut+1 − ut, then,

Δxt+1 ≈ fxtΔxt + futΔut

Cθ(xt, ut) ≈ Δxtcxt + Δutcut +
1

2
ΔxtcxxtΔxt

+
1

2
ΔutcutΔut + ΔutcuxtΔxt + Cθ(xt−1, ut−1).

where the subscripts denote the Jacobians and Hessians of the
dynamic f and cost function C.
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Inverse Optimal Control via Langevin Sampling
Min-max Interpretation

Vθ(τ̃) =
1

n

∑︁
Eθ(τi) −

1

ñ

∑︁
Eθ(τ̃i),

• Mode Shifting Update θ Shifts the low energy mode from the
current trajectories {τ̃i} towards the expert trajectories {τi}.

• Mode Seeking Resample τ̃ Seek the minimum mode in the
distribution.

As a result, our training process is

θ = rgmin
θ
mx

τ̃
Vθ(τ̃).
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Inverse Optimal Control via Langevin Sampling
Cost function

• Lane Keeping cost
– The distance to the center of the lane.
– The heading angle to lane.

• collision cost
– The penalty to collision to other vehicle. It is inversely

proportional to distance to other vehicle.

• Smooth cost
– The L2-norm of acceleration and steering
– The L2-norm for difference of acceleration and steering between

two frames.
– The difference to speed limit.

30/49



Inverse Optimal Control via Langevin Sampling
Cost function

cost function for a trajectory is defined as the sum of the cost for
each frame with a state-control pair,

Costθ(τ) =
∑︁
(x,u)∈τ

Costθ(x, u).

Linear version:

Costθ(x, u) =
K∑︁

k=1

θkfk(x, u).

where fk(x, u) is hand crafted based on human expertise.
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Inverse Optimal Control via Langevin Sampling
Cost function: NN argmented

(a)                                               (b)              (c)              (d)

Figure: (a) hand-crafted Cost (b) nn as transformer (c) NN as residual (d) NN
as residual to each.
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Experiment Result
Experiment : Prediction
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• 10Hz over a time span of 45 minutes.
• 831 total scenes with 96,000 5-second vehicle trajectories.
• Control is inferred by bicycle dynamic model. 33/49



Experiment Result
Comparison Metric

Rooted mean square error (RMSE) for i-th position is defined as:

RMSE =

⎯⎸⎸⎷ 1

N

∑︁
k

Err(τkpre, τ
k
obs, i)

=

⎯⎸⎸⎷ 1

N

∑︁
k

(xkpre,1 − xkobs,1)
2 + (xkpre,2 − xkobs,2)

2.

A small RMSE is desired.
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Experiment Result
Predicted Trajectory

2.7845 2.3046
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Experiment Result
RMSE Comparison

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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M-LSTM
CS-LSTM

36/49



Experiment Result
Autonomous Driving Dataset : Comparing to CIOC
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Experiment Result
Autonomous Driving Dataset : Comparing between different
cost function
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Experiment Result
Synthetic Examples

(a)                (b)

(c)     (d)

Figure: Predicted Trajectory for synthetic examples.
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Conclusion

• Results shows the introduction of control greatly improves
prediction.

– Dynamic model is an important piror knowledge.

• Langevin Sampling is capable of handling non-linear cost
function.

– Langevin Sampling tend to infer smooth trajectories. (Both pro /
con)

– It do well in autonomous driving.

• Synthetic examples show good prediction on corner case.
– We can output each subcost and explain why we need to

acc/dec.
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Multi-Agent Model 5

Calculate the joint trajectory distribution for all moving agents, and
sample multiple trajectories at the same time. Assume we have K
agents and each of them has a trajectory τi, then,

P(τ1, ..., τK; θ) =
1

Z
exp

(︃ K∑︁
i=1

Cθ(τi)

)︃
.

The cost function of each agent shares the same parameters. Notice
that the cost function for one vehicle is dependent on the
information on the others.

5Multi-Agent Generative Adversarial Imitation Learning
42/49



Multi-Agent Model

Sampling multiple trajectory simultaneously may be a little hard. We
can update it through one by one like "Cooderdinate descent".
For each scene, for i = 1:K,
When updating trajectory i, a sample from conditioned distribution:

P(τi|τ−i; θ).
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Multi-Agent Model
Cooperative and competitive

• Cooperative : Cost =
∑︀K

i=1 Cθ(τi) Every agent want to
minimum the overall cost.

• Competitive : Cost = Cθ(τi) −
∑︀
−i Cθ(τi) Each car want to

beat other vehicle, minimum self cost and maximum others’
cost.

• Nash equilibrium : Every car will reach their nash equilibrium.
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Maneuver Conditioned Model

• Hard to predict lane changing –> Introduce Maneuver

6

6Multi-Modal Trajectory Prediction of Surrounding Vehicles with Maneuver
based LSTMs

45/49



Refined Langevin Sampling

• iLQR : Find minimum point, need second order, iteratively
update

• Langevin : Sample distribution, only 1st order needed,
multi-step needed

-> Try to refine the Langevin Sampling by introducing second order
message.7

7A Function Space HMC Algorithm With Second Order Langevin Diffusion Limit
46/49



A Tale of Two Net

Use fast thinking as an initializer and use slow thinking to find the
optimal solution. 8

8Multimodal Conditional Learning with Fast Thinking Policy-like Model and Slow
Thinking Planner-like Model
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