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Deep Energy-Based Generative Modeling and Learning

Knowledge Representation: Concepts and Models

An object A concept, e.g., chair 
(a set of 3Dchair object)

Random object

Concept                Set                Model
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Deep Energy-Based Generative Modeling and Learning

Energy-based Model

An object A concept, e.g., chair 
(a set of 3Dchair object)

Concept                Set                Model

𝑝𝑝𝜃𝜃 𝑋𝑋 =
1

𝑍𝑍 𝜃𝜃
exp 𝑓𝑓𝜃𝜃 𝑋𝑋 𝑝𝑝0(𝑋𝑋)

Random object
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Deep Energy-Based Generative Modeling and Learning

Energy-based Model

𝑝𝑝𝜃𝜃 𝑋𝑋 =
1

𝑍𝑍 𝜃𝜃
exp 𝑓𝑓𝜃𝜃 𝑋𝑋 𝑝𝑝0(𝑋𝑋)

𝑓𝑓𝜃𝜃 𝑋𝑋 :𝑹𝑹𝐷𝐷 → 𝑹𝑹
Any differentiable function
e.g. weight sum of a heuristic rule, 
Gabor filter on image, or neural network.

Directly model the probability: 

log 𝑝𝑝𝜃𝜃 𝑋𝑋 ∝ 𝑓𝑓𝜃𝜃 𝑋𝑋

𝑝𝑝0 𝑋𝑋 ~𝑁𝑁 0, 𝐼𝐼𝐷𝐷
The white noise prior distribution.

𝑍𝑍 𝜃𝜃 = �exp 𝑓𝑓𝜃𝜃 𝑋𝑋 𝑑𝑑𝑋𝑋
The normalization constant to ensure 
overall probability sum up to 1.
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Deep Energy-Based Generative Modeling and Learning

Discriminative, generative and descriptive

Discriminative Task

𝑝𝑝𝜃𝜃 𝐶𝐶 𝑋𝑋
Generative Task

𝑝𝑝𝜃𝜃 X z
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Deep Energy-Based Generative Modeling and Learning

Discriminative, generative and descriptive

Discriminative Model

𝑝𝑝𝜃𝜃 𝐶𝐶 𝑋𝑋
Generative Model

𝑝𝑝𝜃𝜃 X z
Descriptive Model

𝑝𝑝𝜃𝜃 𝑋𝑋
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Deep Energy-Based Generative Modeling and Learning

Discriminative, generative and descriptive

Discrimination

𝑝𝑝𝜃𝜃 𝑘𝑘 𝑋𝑋 =
exp 𝑓𝑓𝜃𝜃𝑘𝑘 𝑋𝑋

∑𝑙𝑙=1𝐾𝐾 exp 𝑓𝑓𝜃𝜃𝑙𝑙 𝑋𝑋

Generation

𝑋𝑋~𝑝𝑝𝜃𝜃(𝑋𝑋)
Descriptive Model

𝑝𝑝𝜃𝜃 𝑋𝑋
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Deep Energy-Based Generative Modeling and Learning

Advantage of EBM 

Directly model the probability.

No need assisting network to ensure balance.

Any bottom-up function can act as energy. 

Avoid mode collapse and avoiding spurious 
modes from out-of-distribution samples.

Models to be combined through product of 
experts or other hierarchical techniques.

Simplicity

Stability

Flexibility

Adaptivity

Compositionality
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Deep Energy-Based Generative Modeling and Learning

Everything to generate
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Yifei Xu Deep Energy-based Generative Learning

Learning
Representing

Controlling
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Yifei Xu Deep Energy-based Generative Learning

Learning

Representing

Controlling

How to model a set?
Generation? Reconstruction?
Semi-supervised representation learning?

How to represent a 3D shape? 
Voxel? Point Cloud? Mesh? 
A function itself can be a form of data representation?
How EBM works with VAE?

What is inverse optimal control?
How to control a vehicle driving on the road?
How to control if we do not even know what good is?
How to do control efficiently and accurately?
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Yifei Xu Deep Energy-based Generative Learning

Learning

Representing

Controlling

Generative PointNet: Energy-Based 
Learning on Unordered Point Sets

Energy-based Implicit Function 
for 3D Shape Representation

Energy-based Continuous 
Inverse Optimal Control
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Yifei Xu Deep Energy-based Generative Learning

Learning Representing Controlling
Generative PointNet: Energy-Based 
Learning on Unordered Point Sets

Energy-based Implicit Function 
for 3D shape representation

Energy-based Continuous 
Inverse Optimal Control

• Train an EBM using MLE

• Sample-based Approximation

0. Fundamental
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Deep Energy-Based Generative Modeling and Learning

Energy-based Model --- Training

• Maximum Likelihood Estimation: 

𝑙𝑙 𝜃𝜃 = 𝐸𝐸𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 log𝑝𝑝𝜃𝜃 𝑋𝑋 ≈
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

log𝑝𝑝𝜃𝜃 (𝑋𝑋𝑖𝑖)

• Train model by gradient descent: 

𝜕𝜕
𝜕𝜕𝜃𝜃

𝑙𝑙 𝜃𝜃 = 𝐸𝐸𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜕𝜕
𝜕𝜕𝜃𝜃

𝑓𝑓𝜃𝜃 𝑋𝑋 − 𝐸𝐸𝑝𝑝𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

𝑓𝑓𝜃𝜃 𝑋𝑋 ≈
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛
𝜕𝜕
𝜕𝜕𝜃𝜃

𝑓𝑓𝜃𝜃 𝑋𝑋𝑖𝑖 −
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛
𝜕𝜕
𝜕𝜕𝜃𝜃

𝑓𝑓𝜃𝜃 ( �𝑋𝑋𝑖𝑖)

~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ~𝑝𝑝𝜃𝜃
Use MCMC sampling
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Deep Energy-Based Generative Modeling and Learning

Energy-Based Model --- Training

Slide 16 of 60

~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
~𝑝𝑝𝜃𝜃
𝑝𝑝𝜃𝜃(𝑥𝑥)



Deep Energy-Based Generative Modeling and Learning

Energy-Based Model --- Training

Slide 17 of 60

~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
~𝑝𝑝𝜃𝜃
𝑝𝑝𝜃𝜃(𝑥𝑥)



Deep Energy-Based Generative Modeling and Learning

Energy-Based Model --- Training

Slide 18 of 60

~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
~𝑝𝑝𝜃𝜃
𝑝𝑝𝜃𝜃(𝑥𝑥)



Yifei Xu Deep Energy-based Generative Learning

Learning

Representing

Controlling

Generative PointNet: Energy-Based 
Learning on Unordered Point Sets

Energy-based Implicit Function 
for 3D shape representation

Energy-based Continuous 
Inverse Optimal Control

1.

2.

3.

Current challenges?

Why EBM helps? 

How to model and sample? 

One more thing…
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Yifei Xu Deep Energy-based Generative Learning

Learning

Representing

Controlling

Generative PointNet: Energy-Based 
Learning on Unordered Point Sets

Energy-based Implicit Function 
for 3D shape representation

Energy-based Continuous 
Inverse Optimal Control

1.

2.

3.

𝑝𝑝𝜃𝜃 =
1
𝑍𝑍𝜃𝜃

exp 𝑓𝑓𝜃𝜃

Point Clouds

on
Energy-Based Model 
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Deep Energy-Based Generative Modeling and Learning

Point Cloud

Scene Reconstruction Face ID Lidar in AV

Why Special?
Unordered set 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑦𝑦, 𝑧𝑧, 𝑥𝑥
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Deep Energy-Based Generative Modeling and Learning

Input-permutation-invariant Score Function
• Energy-Based Model on point cloud:

𝑝𝑝𝜃𝜃 𝑋𝑋 =
1

𝑍𝑍(𝜃𝜃)
𝑒𝑒𝑥𝑥𝑝𝑝 𝑓𝑓𝜃𝜃(𝑋𝑋)𝑝𝑝0(𝑋𝑋)

𝑍𝑍(𝜃𝜃): Normalizing Constant; 𝑝𝑝0(𝑋𝑋): prior distribution
𝑓𝑓𝜃𝜃(𝑋𝑋) is parameterized by a bottom-up input-permutation-invariant neural network.

𝑓𝑓𝜃𝜃 𝑥𝑥1, … , 𝑥𝑥𝑀𝑀 = 𝑔𝑔 ℎ 𝑥𝑥1 , … ,ℎ 𝑥𝑥𝑚𝑚
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Deep Energy-Based Generative Modeling and Learning

• Langevin Dynamics MCMC sampling:

𝑋𝑋0 = 𝑁𝑁 0,𝜎𝜎2

𝑋𝑋𝜏𝜏+1 = 𝑋𝑋𝜏𝜏 +
𝛿𝛿2

2
𝜕𝜕
𝜕𝜕𝑋𝑋

𝑓𝑓𝜃𝜃 𝑋𝑋𝜏𝜏 + 𝛿𝛿𝑈𝑈𝜏𝜏
where 𝑈𝑈𝜏𝜏~𝑁𝑁 0,1 ;

• (𝑲𝑲-step) Short-run MCMC generator: 

Short-run MCMC procedure 
regard as

𝐾𝐾-layer generator model

�𝑋𝑋 = 𝑀𝑀𝜃𝜃 𝑍𝑍, 𝜉𝜉 , 𝑍𝑍~𝑝𝑝0(𝑍𝑍)

Energy-based Model --- Sampling

Transformation        Noise
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Deep Energy-Based Generative Modeling and Learning

Generation Results
• We synthesize 3D point clouds by short-run MCMC sampling from the learned model. 

Lowest quantitively score in 8 / 10 category

Chair

Toilet

Bathtub

Table
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Deep Energy-Based Generative Modeling and Learning

Reconstruction Results

• Short-run MCMC procedure 
regard as

𝐾𝐾-layer generator model 𝑀𝑀𝜃𝜃 𝑍𝑍, 𝜉𝜉

𝑍𝑍 = arg min
𝑧𝑧
𝐿𝐿 𝑍𝑍 = 𝑋𝑋 −𝑀𝑀𝜃𝜃 𝑍𝑍 2

Ground 
Truth

GPointNet
(Ours)

PointFlow

Lowest reconstruction loss in  ALL category
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Deep Energy-Based Generative Modeling and Learning

Interpolation Results

Reconstructed latent 𝑍𝑍1 Reconstructed latent 𝑍𝑍2

Linear Interpolated on latent space. Reconstruct from these latent 𝑍𝑍

Toilet

Table

Chair

𝑍𝑍𝜌𝜌 = 1 − 𝜌𝜌 𝑍𝑍1 + 𝜌𝜌𝑍𝑍2
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Deep Energy-Based Generative Modeling and Learning

Representation Learning

M
ax

 p
oo

lin
g

SVM/
MLP head

Unsupervised Learning
EBM Generative Feature Learning

Supervised Learning
Downstream Task Learning
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Deep Energy-Based Generative Modeling and Learning

Representation Learning

Supervised Learning
Downstream Task Learning

Classification Segmentation
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Yifei Xu Deep Energy-based Generative Learning

Learning

Representing

Controlling

Generative PointNet: Energy-Based 
Learning on Unordered Point Sets

Energy-based Implicit Function 
for 3D shape representation

Energy-based Continuous 
Inverse Optimal Control

1.

2.

3.

Unordered point set is non-trivial to deal with;
No good generative model for point cloud.

No assisting network needed;
Derived from PointNet

Short-run MCMC by Langevin Dynamic
Regarded as k-layer generator

Representation learning
on Classification and Segmentation

Current challenge?

Why EBM helps? 

How to model and sample? 

One more thing…
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Yifei Xu Deep Energy-based Generative Learning

Learning

Controlling

Generative PointNet: Energy-Based 
Learning on Unordered Point Sets

Energy-based Continuous 
Inverse Optimal Control

1.

3.

Representing
Energy-based Implicit Function 
for 3D shape representation

2.

𝑝𝑝𝜃𝜃 =
1
𝑍𝑍𝜃𝜃

exp 𝑓𝑓𝜃𝜃

Implicit Representation

on
Energy-Based Model 
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Deep Energy-Based Generative Modeling and Learning

Represent a 3D shape

Voxel Point Cloud Mesh
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Deep Energy-Based Generative Modeling and Learning

Related Work

• Occupancy Network (1 = on the surface; 0 = off the surface)

• Need sample negative points (point off the surface)

• Train as a classifier. 

• Signed distance function (distance to the surface)

• Only work on watertight object. 

• Must have explicit definition of “in” and “out”

• Need to calculate SDF over all training point.
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Deep Energy-Based Generative Modeling and Learning

Energy-Based Implicit Function

• Defined on point
𝑝𝑝𝜃𝜃 𝑥𝑥,𝑦𝑦, 𝑧𝑧 =

1
𝑍𝑍(𝜃𝜃)

exp 𝑓𝑓𝜃𝜃 𝑥𝑥,𝑦𝑦, 𝑧𝑧
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Deep Energy-Based Generative Modeling and Learning

Conditional EBIF meets VAE

Energy-based
Implicit Function

𝑥𝑥,𝑦𝑦, 𝑧𝑧

ℎ𝑖𝑖

𝑥𝑥𝑖𝑖 𝑝𝑝 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ℎ𝑖𝑖)

𝐿𝐿 𝜙𝜙 𝑋𝑋𝑖𝑖 = 𝐸𝐸𝑞𝑞𝜙𝜙 𝑧𝑧 𝑥𝑥𝑖𝑖
log𝑝𝑝𝜃𝜃 𝑥𝑥 𝑧𝑧Loss:

MLE Loss

Map 

to
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Deep Energy-Based Generative Modeling and Learning

Conditional EBIF meets VAE

Variational
Encoder Energy-based

Implicit Function

𝑥𝑥,𝑦𝑦, 𝑧𝑧

ℎ𝑖𝑖

𝑥𝑥𝑖𝑖 𝑝𝑝 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ℎ𝑖𝑖)

𝐿𝐿 𝜙𝜙 𝑋𝑋𝑖𝑖 = 𝐸𝐸𝑞𝑞𝜙𝜙 𝑧𝑧 𝑥𝑥𝑖𝑖
log𝑝𝑝𝜃𝜃 𝑥𝑥 𝑧𝑧 − 𝐾𝐾𝐿𝐿 𝑞𝑞𝜙𝜙 𝑧𝑧 ∥ 𝑝𝑝0 𝑧𝑧

�
𝑥𝑥,𝑦𝑦,𝑧𝑧 ∈ 𝑋𝑋𝑖𝑖

log𝑝𝑝𝜃𝜃 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝜇𝜇𝑖𝑖 + 𝜖𝜖𝜎𝜎𝑖𝑖)
1
2
�
𝑗𝑗=1

𝐽𝐽

(1 + 2 log𝜎𝜎 − 𝜇𝜇𝑗𝑗2 − 𝜎𝜎𝑗𝑗2 )Reparametrized trick:

Variational Loss:

MLE Loss KL Loss
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Deep Energy-Based Generative Modeling and Learning

Importance Sampling
Maximum Likelihood Estimation use gradient descent: 

𝜕𝜕
𝜕𝜕𝜃𝜃

𝑙𝑙 𝜃𝜃 = 𝐸𝐸𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜕𝜕
𝜕𝜕𝜃𝜃

𝑓𝑓𝜃𝜃 𝑋𝑋 − 𝐸𝐸𝑝𝑝𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

𝑓𝑓𝜃𝜃 𝑋𝑋

Importance Sampling

𝐸𝐸𝑝𝑝 ℎ 𝑥𝑥 = �ℎ 𝑥𝑥 𝑝𝑝 𝑥𝑥 𝑑𝑑𝑥𝑥 = �
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

ℎ 𝑥𝑥 𝑞𝑞(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝐸𝐸𝑞𝑞
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

ℎ 𝑥𝑥

To make a better approximation: 

1. The reference should be easy to sample. --- use uniform distribution 

2. The reference should be not too far away from the target distribution --- Piecewise Uniform

For point 𝑥𝑥 in a specific cube 𝐺𝐺: 𝑞𝑞 𝒙𝒙 = 1
𝑍𝑍𝑞𝑞

exp 𝑓𝑓𝜃𝜃(�𝒙𝒙) , Where �𝒙𝒙 is the center point of the cube 𝐺𝐺.
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Deep Energy-Based Generative Modeling and Learning

Generation Results
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Deep Energy-Based Generative Modeling and Learning

Reconstruction Results
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Deep Energy-Based Generative Modeling and Learning

Testing reconstruction
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Deep Energy-Based Generative Modeling and Learning

Interpolation Results

Training

Testing
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Yifei Xu Deep Energy-based Generative Learning

Learning

Controlling

Generative PointNet: Energy-Based 
Learning on Unordered Point Sets

Energy-based Continuous 
Inverse Optimal Control

1.

3.

Cannot deal with non-watertight object;
Need human-defined function.

A natural representation --- 𝑝𝑝(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
No need to sample negative points

Importance Sampling
Multi-grid / volume-adaptive piecewise uniform

Cooperate with VAE
Good generation results 

Representing
Energy-based Implicit Function 
for 3D shape representation

2.

Current challenge?

Why EBM helps? 

How to model and sample? 

One more thing…
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Yifei Xu Deep Energy-based Generative Learning

Learning
Generative PointNet: Energy-Based 
Learning on Unordered Point Sets

1.

Representing
Energy-based Implicit Function 
for 3D shape representation

2.

Controlling
Energy-based Continuous 
Inverse Optimal Control

3.

𝑝𝑝𝜃𝜃 =
1
𝑍𝑍𝜃𝜃

exp 𝑓𝑓𝜃𝜃

Inverse Optimal Control

on
Energy-Based Model 
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Deep Energy-Based Generative Modeling and Learning

Continuous Inverse Optimal Control

State: 𝑥𝑥 = {longitude, 
latitude, speed, 
heading angle, 

acceleration, steering 
angle};

change of 
acceleration, change 

of steering angle

Dynamic : The 
transition function.
𝑓𝑓 is bicycle model. 
𝑥𝑥𝑑𝑑+1 = 𝑓𝑓(𝑥𝑥𝑑𝑑 ,𝑢𝑢𝑑𝑑)

The MDP formulation for self-driving

𝑥𝑥𝑑𝑑: State 𝑢𝑢𝑑𝑑: Control 𝑓𝑓: Dynamic Function
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Deep Energy-Based Generative Modeling and Learning

Continuous Inverse Optimal Control

𝑥𝑥𝑑𝑑: State 𝑢𝑢𝑑𝑑: Control 𝑓𝑓: Dynamic Function

The MDP formulation for self-driving

𝐶𝐶𝜃𝜃: Cost Function

𝑈𝑈 = arg min
𝑈𝑈

𝐶𝐶𝜃𝜃 𝑋𝑋,𝑈𝑈
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Deep Energy-Based Generative Modeling and Learning

Continuous Inverse Optimal Control

The MDP formulation for self-driving

𝐶𝐶𝜃𝜃: Cost Function

𝜃𝜃 = arg min
𝜃𝜃
𝐶𝐶𝜃𝜃 𝜏𝜏𝑖𝑖

Expert 
Demonstration:

𝜏𝜏𝑖𝑖

Learn from

A sequence of state and control pair 𝑋𝑋,𝑈𝑈

𝑥𝑥𝑑𝑑: State 𝑢𝑢𝑑𝑑: Control 𝑓𝑓: Dynamic Function
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Deep Energy-Based Generative Modeling and Learning

Instinct

How human drive?

Computation
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Deep Energy-Based Generative Modeling and Learning

How an agent drives?

Fast thinking: Policy Method Slow thinking: Optimize Method
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Deep Energy-Based Generative Modeling and Learning

Fast thinking: Policy Method

Two type of model for optimal control

Slow thinking: Optimize Method

𝑈𝑈 = arg min
𝑈𝑈

𝐶𝐶𝜃𝜃 𝑋𝑋,𝑈𝑈
𝑈𝑈: A sequence of control 𝑢𝑢 𝐶𝐶𝜃𝜃: A sequence of cost 𝑐𝑐𝜃𝜃

𝑢𝑢 = arg min
𝑢𝑢
𝑄𝑄𝜃𝜃 𝑥𝑥,𝑢𝑢

𝑄𝑄𝜃𝜃: The expected future cost 
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Deep Energy-Based Generative Modeling and Learning

Fast thinking: Policy Method

Conditional EBM

Slow thinking: Optimize Method

• Conditional Energy-based Model:

Where 𝑍𝑍𝜃𝜃 𝑒𝑒, ℎ is the normalizing constant. 𝑒𝑒 ≔ environment; ℎ ≔ history.

• Previous work: Use Laplace approximation to approximate 𝑍𝑍𝜃𝜃

𝑝𝑝𝜃𝜃 𝝉𝝉 𝑒𝑒, ℎ = 𝑝𝑝𝜃𝜃 𝐮𝐮 𝑒𝑒, ℎ =
1

𝑍𝑍𝜃𝜃(𝑒𝑒, ℎ)
exp −𝐶𝐶𝜃𝜃 𝐱𝐱,𝐮𝐮, 𝑒𝑒, ℎ
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Deep Energy-Based Generative Modeling and Learning

Fast thinking: Policy Method

Conditional EBM

Slow thinking: Optimize Method

𝑝𝑝𝜃𝜃 𝝉𝝉 𝑒𝑒, ℎ = 𝑝𝑝𝜃𝜃 𝐮𝐮 𝑒𝑒, ℎ =
1

𝑍𝑍𝜃𝜃(𝑒𝑒, ℎ)
exp −𝐶𝐶𝜃𝜃 𝐱𝐱,𝐮𝐮, 𝑒𝑒, ℎ

• Our method: Sampling-based Approach / Optimization-based Approach: 

𝜕𝜕
𝜕𝜕𝜃𝜃

𝑙𝑙 𝜃𝜃 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛
𝜕𝜕
𝜕𝜕𝜃𝜃

𝐶𝐶𝜃𝜃 �𝒙𝒙𝒊𝒊, �𝒖𝒖𝒊𝒊, 𝑒𝑒, ℎ −
𝜕𝜕
𝜕𝜕𝜃𝜃

𝐶𝐶𝜃𝜃 𝒙𝒙𝒊𝒊,𝒖𝒖𝒊𝒊, 𝑒𝑒, ℎ

Sampled through Langevin dynamics
or

Predicted through optimization method
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Deep Energy-Based Generative Modeling and Learning

Fast thinking: Policy Method

Conditional EBM

Slow thinking: Optimize Method

𝑝𝑝𝜃𝜃 𝝉𝝉 𝑒𝑒, ℎ = 𝑝𝑝𝜃𝜃 𝐮𝐮 𝑒𝑒, ℎ =
1

𝑍𝑍𝜃𝜃(𝑒𝑒, ℎ)
exp −𝐶𝐶𝜃𝜃 𝐱𝐱,𝐮𝐮, 𝑒𝑒, ℎ

• Support more complex cost function:

• 1D CNN

• LSTM

• MLP

• Sample-based approach:

• More exploration 

• Finding corner case

• Better generalization
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Deep Energy-Based Generative Modeling and Learning

Two type of model for optimal control

Slow thinking: Optimize MethodFast thinking: Policy Method

• Previous work: Imitate policy learnt from expert demonstration. Result used directly. 
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Deep Energy-Based Generative Modeling and Learning

Two type of model for optimal control

Slow thinking: Optimize MethodFast thinking: Policy Method

• Our method: Imitate policy learn from the optimized result (slow thinking result) 

• A generator is used as a fast initializer of the sampling (or the optimization): 

𝑞𝑞𝛼𝛼 𝑢𝑢, 𝜉𝜉 𝑒𝑒, ℎ = 𝑞𝑞𝑑𝑑 𝑢𝑢 𝜉𝜉, 𝑒𝑒, ℎ 𝑝𝑝(𝜉𝜉)

• Loss for encoder:

𝐿𝐿𝑔𝑔 𝛼𝛼 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑛𝑛

∥ �𝑢𝑢𝑖𝑖 − 𝑞𝑞𝛼𝛼(𝜉𝜉, 𝑒𝑒, ℎ) ∥2

• Result is used as the initialization of the sampling / optimization
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Deep Energy-Based Generative Modeling and Learning

EBIOC: Predicted trajectories

■ Ground Truth;   ■ Ours;   ■ GAIL;   ■ Other Vehicle;   ■ Lane.
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Deep Energy-Based Generative Modeling and Learning

EBIOC: Toy examples

Overtake Merging (from right) Curving (right)

■ Green: predicted trajectories; ■ Orange: other vehicles; ■ Red: Rollout if keep constant control.

Trigger Break                    Merging (from left) Curving (left)
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Deep Energy-Based Generative Modeling and Learning

EBIOC: Multi-agent Prediction Result
• Meta-cost: sum of each cost = Product of probability = A joint probability distribution 
• Assumption: Fully cooperate + Share information

𝑝𝑝𝜃𝜃 𝑼𝑼 𝒆𝒆,𝒉𝒉 = �
𝑘𝑘=1

𝐾𝐾

𝑝𝑝𝜃𝜃 𝒖𝒖𝒌𝒌 𝑒𝑒, ℎ𝑘𝑘 =
1

𝑍𝑍𝜃𝜃(𝒆𝒆,𝒉𝒉)
exp −�

𝑘𝑘=1

𝐾𝐾

𝑐𝑐𝜃𝜃(𝒙𝒙𝒌𝒌,𝒖𝒖𝒌𝒌, 𝑒𝑒, ℎ𝑘𝑘)

Multi-agent prediction on NGSIM US101 dataset (■ Lane; ■ Ground Truth;   ■ Ours)
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Yifei Xu Deep Energy-based Generative Learning

Learning
Generative PointNet: Energy-Based 
Learning on Unordered Point Sets

1.
Trade off between exploration and exploitation

Trade off between efficiency and accuracy

Sample-based: Better exploration
Combine policy method and optimization 

Sample-base: Langevin Dynamic
Optimized-based: iLQR

Multi-agent setting
Joint EBM cooperative learning

Representing
Energy-based Implicit Function 
for 3D shape representation

2.

Controlling
Energy-based Continuous 
Inverse Optimal Control

3.

Current challenge?

Why EBM helps? 

How to model and sample? 

One more thing…
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Deep Energy-Based Generative Modeling and Learning

Publications
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Deep Energy-Based Generative Modeling and Learning

Reference
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Yifei Xu

Thanks



Deep Energy-Based Generative Modeling and Learning

Q&A

ControlPoint Cloud Implicit Function

Energy-based Model: 𝑝𝑝 𝑋𝑋 = 1
𝑍𝑍

exp 𝑓𝑓 𝑋𝑋

Variational
Encoder

Energy-based
Implicit 

Function

𝑥𝑥, 𝑦𝑦, 𝑧𝑧

ℎ𝑖𝑖

𝑥𝑥𝑖𝑖 𝑝𝑝 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 ℎ𝑖𝑖)
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