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Knowledge Representation: Concepts and Models
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Energy-based Model

Concept <=— Set =—= Model

pe(X) = exp fp(X) po(X)
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Energy-based Model

. pD
Directly model the probability: fo(X):R” - R

Any differentiable function

log Po (X) 06 fg (X) e.g. weight sum of a heuristic rule,

Gabor filter on image, or neural network.

pe(X) = exp fp(X) po(X)

Z(0)

z(0) = f 2298 fig ) e po()~N(0, Ip)

The normalization constant to ensure e WiADER R ey CIEblse.

overall probability sum up to 1.



Slide 6 of 60 Deep Energy-Based Generative Modeling and Learning

Discriminative, generative and descriptive

Discriminative Task Generative Task

pe (C|X) po (X|z)
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Discriminative, generative and descriptive

Descriptive Model Discriminative Model Generative Model

Pe (X) pe(C|X) pe (X|z)
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Discriminative, generative and descriptive

Descriptive Model Discrimination Generation

X __ expfp, (X) X~pa(X
Po(X) pokIX) = S pe(X)




Advantage of EBM
Simplicity
Stability
Flexibility
Adaptivity

Compositionality
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Directly model the probability.

No need assisting network to ensure balance.

Any bottom-up function can act as energy.

Avoid mode collapse and avoiding spurious
modes from out-of-distribution samples.

Models to be combined through product of
experts or other hierarchical techniques.
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Everything to generate




Learning

Representing
Controlling




Learning

How to model a set?
Generation? Reconstruction?
Semi-supervised representation learning?

Representing

How to represent a 3D shape?
Voxel? Point Cloud? Mesh?
A function itself can be a form of data representation?

Controlling

What is inverse optimal control?

How to control a vehicle driving on the road?

How to control if we do not even know what good is?
How to do control efficiently and accurately?



Learning

Generative PointNet: Energy-Based
Learning on Unordered Point Sets

Representing

Energy-based Implicit Function
for 3D Shape Representation

Controlling

Energy-based Continuous
Inverse Optimal Control



0. Fundamental

e Train an EBM using MLE

« Sample-based Approximation
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Energy-based Model --- Training

e Maximum Likelihood Estimation:

1(0) = Eq,,.,l108 00 (X)] = Zlogpe (X:)

 Train model by gradient descent:

9 9 9 el
%1(9) = Eq4ata %fe(x)] — By, @fe(x)] ~ ﬁ; %fe (X;) —-

. ~Pdata . ~Po

Use MCMC sampling
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Energy-Based Model --- Training
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Energy-Based Model --- Training
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Energy-Based Model --- Training




1. Learning
Generative PointNet: Energy-Based Current ChalleI’IQES?

Learning on Unordered Point Sets

. Representing Why EBM helps?

Energy-based Implicit Function
for 3D shape representation

How to model and sample?

. Controlling
Energy-based Continuous One more th|ng

Inverse Optimal Control



1. Learning 1
Generative PointNet: Energy-Based p@ ZQ eXp f@ O n

Learning on Unordered Point Sets

Energy-Based Model

Point Clouds
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Point Cloud

Why Special?

Unordered set {x,y,2} ={y, z,x}

Scene Reconstruction
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Input-permutation-invariant Score Function
 Energy-Based Model on point cloud:
pe(X) = 70 exp fo(X) po(X)

Z(0): Normalizing Constant; py(X): prior distribution
fo(X) Is parameterized by a bottom-up input-permutation-invariant neural network.

mlp (64,128, 256, 512, 1024) mlp (512, 256, 64)
64 128 256 512 1024
> : : S > 2 : 1024
3 < e = S 5 5 = 51
a > > > > > > > < 2 ] 2506 64 o
c i {
.3 o < g :g ': o~ [=] )
a | b : - N 1 2 4 &
5 < : - p x ¢ > sl
2 ®| shared s shared 8 shared 8 shared = shared 2 E‘ s
— . . Q =1
_ z i 3
—(J— —___ —{_ — 1> >}

folx1, o, xy}) = g{h(xy), ..., A(x)})
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Energy-based Model --- Sampling

 Langevin Dynamics MCMC sampling:

X, =N(0,0%)
5% 0
Xr41 = K¢ + 70_Xf9(XT) +0U;
where U.~N(0,1); Transformation Noise

e (K-step) Short-run MCMC generator:

regard as
Short-run MCMC procedure > K-layer generator model

X=MQ(Z,€), ZNPO(Z)
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Generation Results

* We synthesize 3D point clouds by short-run MCMC sampling from the learned model.

Chair
Toilet
Bathtub

Table

Lowest quantitively score in 8 / 10 category
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Reconstruction Results

regard as
» Short-run MCMC procedure > K-layer generator model Mg (Z, §)

Z =argminL(Z) = ||X — My (2)||?
Z

Ground
Truth

GPointNet
(Ours)

PointFlow

Lowest reconstruction loss in A L L category
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Interpolation Results

Linear Interpolated on latent space. Reconstruct from these latent Z

k__________- I = . I = __‘

Reconstructed latent Z; Reconstructed latent Z,

Z, =1 -p)i+pZ,

Tollet

Table

Chair
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Representation Learning

Input Points

n x3

mlp (64, 128, 256, 512, 1024)

64 128 256 591172 1024
> :;[_ | > > 5 > > @)
> :;l = —> —> > > > <
> > —> > > > = < —_

— |« . X 2 3 S é SVM/

: X x x X

shared = shared = shared = shared S shared = PO M L P h ead
. . - m
=
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Unsupervised Learning

EBM Generative Feature Learning

Supervised Learning

Downstream Task Learning
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Representation Learning

Supervised Learning

Downstream Task Learning

Classification Segmentation



1. Learning

Unordered point set is non-trivial to deal with;

Generative PointNet: Energy-Based No good generative model for point cloud.
Learning on Unordered Point Sets

Why EBM helps?

No assisting network needed,;
Derived from PointNet

How to model and sample?

Short-run MCMC by Langevin Dynamic
Regarded as k-layer generator

One more thing...

Representation learning
on Classification and Segmentation



1

Po = ZH eprQ on

Energy-Based Model

2. Representing

Energy-based Implicit Function
for 3D shape representation

Implicit Representation
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Represent a 3D shape
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Related Work

» Occupancy Network (1 = on the surface; 0 = off the surface) ¢ Signed distance function (distance to the surface)
* Need sample negative points (point off the surface) * Only work on watertight object.
e Train as a classifier. * Must have explicit definition of “in” and “out”

* Need to calculate SDF over all training point.
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Energy-Based Implicit Function

 Defined on point

Pe(x»J’»Z) —

Z(H) EXP fH(xr Y, Z)
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Conditional EBIF meets VAE

h;
Map
to Energy-based .
Implicit Function
Xi p(x,y,zlhl-)
ez
MLE Loss

Loss: L(olX;) = Eq¢(Z|xi) logpg(x|z)
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Conditional EBIF meets VAE

h;
Variational
Encoder Energy-based .
Implicit Function
X; p(x,y,zlhi)
ez
MLE Loss KL Loss
Variational Loss: L(p|X;) = Eq¢(Z|xi) logpocxiz)y — KL(‘Id)(z) I po(z))

J
Reparametrized trick z logpg (x, y, z|p; + €0;) 1Z(l +2logo — uj — of)
{x,y,Z}E Xi 2 ]=1
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Importance Sampling

Maximum Likelihood Estimation use gradient descent:
d 0 d
%1(9) = Equ0ia %fe(x)] — Ep, %fa(x)]
Importance Sampling

Ep[h(x)] = jh(x)p(x)dx — ( ) [p( )

G )h(x)q( x)dx = E, h(x)]

To make a better approximation:

1. The reference should be easy to sample. --- use uniform distribution

Deep Energy-Based Generative Modeling and Learning

2. The reference should be not too far away from the target distribution --- Piecewise Uniform

For point x in a specific cube G: g(x) = Ziexp fo(X), Where x is the center point of the cube G.
q
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Generation Results



Slide 38 of 60 Deep Energy-Based Generative Modeling and Learning

Reconstruction Results
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Testing reconstruction
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Interpolation Results

Training

Testing



Current challenge?

Cannot deal with non-watertight object;
Need human-defined function.

Why EBM helps?

A natural representation --- p(x, y, z)

2 . Re p res e n tl n g No need to sample negative points

How to model and sample?

Energy-based Implicit Function
Multi-grid / volume-adaptive piecewise uniform

One more thing...

Cooperate with VAE
Good generation results



1

Po = Z@ eprH on

Energy-Based Model

3. Controlling

Energy-based Continuous
Inverse Optimal Control Inverse Optimal Control
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Control

The MDP formulation for self-driving

State: x = {longitude, _
latitude, speed, change of Dynamic : The

heading angle, acceleration, change rEmeiem WGl
acceleration, steering of steering angle fs blc_ycle model.
angle}; Xer1 = f(Xe, Ug)
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Optimal Control

The MDP formulation for self-driving

Co: Cost Function

U = arg mUin Co(X,U)



Slide 45 of 60 Deep Energy-Based Generative Modeling and Learning

Continuous Inverse Optimal Control

The MDP formulation for self-driving

Learn from

A sequence of state and control pair (X, U)

Expert

Demonstration: 6 = arg mgin CH (Ti)
{7}
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How human drive?
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How an agent drives?

Fast thinking: Policy Method Slow thinking: Optimize Method
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Two type of model for optimal control

u =argminQg(x,u) U = arg mUin Co(X,U)
u

Qg: The expected future cost U: A sequence of control u  Cy: A sequence of cost ¢y

Fast thinking: Policy Method Slow thinking: Optimize Method
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Conditional EBM

Fast thinking: Policy Method Slow thinking: Optimize Method

» Conditional Energy-based Model:

pg(tle,h) = pg(ule, h) = exp[—Co(X,u, e, h)]

Zg(e, h)
Where Zy4 (e, h) is the normalizing constant. e := environment; h := history.

» Previous work: Use Laplace approximation to approximate Zg
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Conditional EBM

Fast thinking: Policy Method Slow thinking: Optimize Method

pg(tle,h) = pg(ule, h) =

Zae D) exp[—Cp(x,u, e, h)]

« Our method: Sampling-based Approach / Optimization-based Approach:

—l(@) — 2[ CG(xuuve h) - 0 CG(xU u;e, h)

Sampled through Langevin dynamics
or
Predicted through optimization method
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Conditional EBM

Fast thinking: Policy Method Slow thinking: Optimize Method

exp[—Co(x,u,e,h)]

pG(TleI h) = pg(llle, h) = Zg(e h)

« Sample-based approach: e Support more complex cost function:
* More exploration « 1D CNN
* Finding corner case e LSTM

» Better generalization  MLP
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Two type of model for optimal control

Fast thinking: Policy Method Slow thinking: Optimize Method

* Previous work: Imitate policy learnt from expert demonstration. Result used directly.
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Two type of model for optimal control

Fast thinking: Policy Method Slow thinking: Optimize Method

« Our method: Imitate policy learn from the optimized result (slow thinking result)

« A generator is used as a fast initializer of the sampling (or the optimization):

qda(u,éle, h) = q,(ulé, e, h)p (&)
» Loss for encoder:

n
1
Ly(a) = Ez | T — g (5, e, h) |12
i=1

* Result is used as the initialization of the sampling / optimization
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EBIOC: Predicted trajectories

NGSIM single-agent NGSIM multi-agent ISEE single-agent

b b 1.5
4 > 1
a
2 0.5
3
0 7 0
1s 2s 3s 4s 1 —// 1s 2s 3s
= Constant Velocity =——CIOC 0 = Constant Velocity =——CIQC
— GAIL =purs (via iLOR) 1s 2s 3s 4s = gurs (via iLOR) —purs (via GD)
= ours (via GD) —ours (via Langevin) ——~Constant Velocity =———PS-GAIL ——ours = ours (via Langevin)
10.0 10.0 100 10.0
75 75 75 75
5.0 5.0 5.0 5.0
25 . 25 25 25 .
00 ¢ 00 ® 00 00
L ]
25 . 25 . 25 f 25 .
5.0 50 50 50
-15 -7.5 - -15 =75
-10.0 , : ; ; ; . -10.0 , : ; : -10.0 ; ; . ; 100 1 , ; ; ; ; ; ;
=40 =20 o 20 40 60 -40 =20 o &0 =20 -10 1] 10 20 30 —a0 =40 =20 o 20 40 60 80

m Ground Truth; = Ours: m GAIL: - m Lane.
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EBIOC: Toy examples

15

10 A

-10

-15

15

10 A

—-10 4

-15

m Green: predicted trajectories;

(4
Overtake
Trigger Break

15

10 1

—10 4

-15

15

10 1

—-10

-15

T
0

Merging (from right)

10 20 30 40 50 60 7

1]

Merging (from left)

0

10 20 30 40 50 60 70 80

15

10 1

-10

-15

15

10 1

-10

-15

Deep Energy-Based Generative Modeling and Learning

Curving (right)
Curving (left)

other vehicles; m Red: Rollout if keep constant control.
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EBIOC: Multi-agent Prediction Result

* Meta-cost: sum of each cost = Product of probability = A joint probability distribution

« Assumption: Fully cooperate + Share information

K K
1
Po (Ule, h) — l_[pg (uk|e’ hk) = > < 8Xp|— z Co (xk, uk; e, hk)
Zg(e, h)
k=1 k=1
PY . ¢ s - e \ . - : .\ : - " ]
~ + o ° .-~ ¢ '- . .o e . s : .

Multi-agent prediction on NGSIM US101 dataset ( ; m Ground Truth; m Ours)



Current challenge?

Trade off between exploration and exploitation
Trade off between efficiency and accuracy

Why EBM helps?

Sample-based: Better exploration
Combine policy method and optimization

How to model and sample?

Sample-base: Langevin Dynamic
Optimized-based: ILOR

3_ COntrOlhng One more thing...

Multi-agent setting

Energy-based Continuous Joint EBM cooperative learning
Inverse Optimal Control
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Q&A

Energy-based Model: p(X) = %exp f(X)

h
Variational Energy-based
Encoder Implicit .
Function
X p(x,y,zlhy)

vz [l

Point Cloud Implicit Function
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