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Abstract

Inverse optimal control solves the problem of infering the cost function of a state-
control pair from large number of expert trajectories, with the objective to perform
ideal control based on the explicit cost function learned. We introduce energy-
based generative model to estimate the cost function, and use Langevin Dynamic,
a Monte Carlo based sampling algorithm, to directly sample the full trajectory.
Conventionally, the cost function is defined on a pair of state and control, with the
trajectory cost being the sum of them. Whereas, our method is capable of learning
a higher level cost function for the full trajectory. We refine the rule-based cost
function with a convolutional neural network to obtain the NN-augmented cost
function, which combines the advantages of both model-based and model-free
learning. Our method achieves a better control in experiments on real autonomous
driving data.

1 Introduction

Optimal control plays a major role in all kinds of robotic projects including autonomous driving.
For self-driving, a state is represented by data extracted from multiple resources including camera,
radar, lidar, GPS, etc. In order to find the optimal control on the agent, we construct a cost function
Cθ(x, u) on state x and control u. An optimal control given the current state is then that with the
lowest cost, which is typically defined as the cost of the future trajectory.

Thus, a key problem in the markov decision process (MDP) described above is the definition on
the cost function. In previous literature, both model-based and model-free methods have been
applied to the issue, while we are seeking for a balance between flexibility and interpretability.

In early research and most industrial models, the cost function is hand-crafted through human
experience. However, this approach is increasingly problematic, as the number of features
increases with the availability of data associated with each state. For example, facing an obstacle
like a bird, it is hard to decide whether it is big enough to affect the cost function.

As the widespread of deep learning is reshaping the artificial intelligence applications, autonomous
driving is also studied without an explicit model. Lu proposed a model-free method to learn



autonomous control on driving from end to end [1]. However, it is not subject to inference such
that no convincible explanation can be reached as to why an action, such as turning left, is decided.
Therefore, model-free method is not stable or reliable enough in practice.

Whereas, inverse optimal control has the advantage that it learns an explicit cost function from
expert trajectories of the state-control. Autonomous driving can hardly be formulated as an MDP,
yet there are various prior knowledges for modeling. In specific, it is difficult to formulate the cost
function and the final objective in straightforward mathematical terms, while the general dynamic
is known and basic rules are in commonsense, for instance, collision must be avoided.

In this paper, we formulate inverse optimal control by energy-based model. Since the training
stage is equivalent to a min-max procedure, we can use sampling methods including Langevin
Dynamic, gradient descent and iterative Linear Quadratic Regulation. More detailed discussion is
presented in Section 3.

In section 4, multiple deep neural network structures are designed as an add-on to rule-based
driving cost defined by human, taking the advantage of both deep neural network and rule-based
features. The CNN design is considered to be the most accurate, as it takes into account the
connection between history trajectories and future trajectories.

We compare the baseline model CIOC with our method empirically in Section 5. Different neural
network structures are also discussed. In autonomous simulator, our control is capable of following
lane, avoiding collision and even overtaking the slow car ahead.

There are two main contributions of this paper,

(1) Design a deep network based on human defined feature. It not only utilizes the big data by the
deep neural network, but also take preliminary knowledges into consideration.

(2) Introduce Langevin Dynamic, a Monte Carlo based sampling method. This method can sample
trajectory over non-linear high-dimensional distribution with efficiency.

We also discussed further expansion on multi-agent problem.

2 Related Work

Inverse optimal control (IOC), with an idea similar to inverse reinforcement learning, has seen
a variety of methods including maximum margin-based optimization, maximum entropy-based
optimization, Bayesian inference, regression and classification [2].

Ziebart proposed an energy-based model for trajectories [3]. They assumed an energy-based
distribution on trajectories and learned the model parameters by maximizing the entropy over
expert data. Wulfmerer extended the maximum entropy IRL to a deep version [4]. However, these
algorithms can only solve finite state control problem, because it uses dynamic programming to
calculate the precise normalization term which is intractable in continue case (detailed in section
3).

For continuous inverse optimal control, Levine used Laplace assumption making the trajectory
distribution into a gaussian [5]. Nevertheless, the assumption is not always justifiable, especially
when the cost function is complex. The emipirical results suggests that our method with sampling
method outperformed CIOC method.
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Finn proposed guided cost learning, a sample-based method with energy-based model [6][7]. It
uses policy search to sample the trajectory, in order to approximate the normalization term in the
energy-based model. However, for complex cost functions approximation by policy method is
much more difficult.

Jonathan [8] and Yunzhu [9] synthesized and evaluated the full state-control trajectories iteratively
by Generative Adversarial Network (GAN). In their setting, the trajectory distribution is captured
by GAN, so as to be learned from the images directly. Since it is trained end to end without an
explicit model, it is hard to tell why a particular control is performed, since no meaningful cost
function is learned.

In summary, strictly model-based methods are not flexible enough for more general problem,
while model-free methods with deep learning is not subject to inference. We believe that the
energy-based model, which is descriptive in nature, could be a solution. A core concern in EBM
is how to approximate a non-linear hogh-dimensional distribution with intractable normalization
term, yet the existing attempts for IOC are not effective for complex distributions. Whereas, Xie
el. introduced Langevin Dynamic, a MCMC based sampling method, to formulate non-linear
energy-based model with a variety of data including image data [10], video data [11] and 3D data
[12], which learned even high-dimensional distributions effectively. We believe the same idea
should be applicable in IOC.

3 Preliminary

3.1 Inverse Optimal Control

We first define continuous markov decision process (MDP) for single agent in IOC. An MDP is
defined as,

M =< X,U,D,C >

where X ∈ RN is the state, U ∈ Rn is the control, D is the dynamic function: xt+1 = f(xt, ut)
and C(xt, ut) is the cost function. We assume the dynamic function f is known and the state x and
control u are continuous.

A trajectory is a sequence of state and control with a fixed length T. We can define the cost function
of a trajectory as, Cθ(τ), which can be an arbitrary function. Normally, Cθ(τ) =

∑T
t=0Cθ(xt, ut).

The objective of optimal control is to output a trajectory with the lowest cost given a known MDP,
while that of inverse optimal control is to learn the MDP, derermined by the dynamic function or
cost function, that best fits the expert trajectories τt given a training set of expert trajectories. In
general, the idea is to minimize the expert trajectory costs.

3.2 Autonomous Driving

In autonomous driving, the state x consists of ego vehicle status (position, steering, speed) and
environment information (lane, sign and other vehicle status). Control u has two dimensions,
steering and acceleration. In our dataset, the environment information are provided as the position
of lane, the speed limit, the road boundary and other vehicle status which is estimated through
camera and sensor. The trajectory in autonomous driving is a sequence of state and control with
the same interval, typically 0.1s.
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In cost function parameter learning procedure, our input is expert trajectories. The full trajectories
of ego vehicle and other vehicles are provided, so does the lane which the first-frame vehicle can
see.

In optimal control procedure, we assume we only have the starting point of a trajectories, for both
ego vehicle and other vehicles. We have to predict other vehicles’ future trajectories first. Then
predict ego vehicle’s future trajectory. When evaluating the algorithm, we compare the predicted
trajectory with ground truth in testing set. In real car testing, we only use the first frame control
(although we predict a trajectory with multiple control). Then we move our car to a new state and
predict the new trajectory based on the new state.

The dynamic function is known in our situation. We use bicycle model [13] to form the dynamic
function, which considers our vehicle as a two-axis vehicle. It is differentiable.

3.3 Energy-based Model

In this paper, we try to infer the distribution of the trajectory. The distribution is assumed to take
the form of an energy-based function where the energy term is the negative cost function.

The probability distribution of the trajectory τ is defined as,

P (τ ; θ) =
1

Z
exp(−cθ(τ))q(τ)

where q is reference distribution of trajectory, typically a Gaussian white noise distribution
according to the control u, i.e. q(τ) ∝ exp(−||u||2/2s2), cθ(τ) is the cost function and,

Z =

∫
exp(cθ(τ))q(τ)dτ = Eq[exp(−cθ(τ))q(τ)]

is the normalization term. This term constrains
∫
P (τ) = 1. The probability of taking a trajectory

is small if the corresponding cost is big.

In this energy-based model, the energy function is,

Eθ(τ) =
||u||2

2s2
− cθ(τ)

The goal of inverse optimal control is to find a distribution better represent the expert control. In
other word, we want to maximum the log-likelihood on expert trajectories (τi ∈ Trajobs),

l(θ) =
1

n

∑
logP (τi; θ) =

1

n

∑
(−cθ(τi)− log(Z)

4 Algorithms

In energy-based model probability density function, the normalization term Z is intractable. In
CIOC, it uses Laplace approximation which model the trajectory distribution to be a Gaussian.
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Hence, this likelihood can be approximated by doing Taylor expansion on cost function around
control u,

l(θ) =
1

2
CT
u C
−1
uuCu +

1

2
log | − Cuu| −

du
log

(2π)

where cu = ∂Cθ
∂U
, cuu = ∂2C

∂U2

However, the assumption is not justifiable in many cases. As an alternative, we use sample-based
method to calculate the normalization term. The gradient will be,

∂

∂θ
l(θ) =

1

n

∑ ∂

∂θ
cθ(τi)− EP (τ ;θ)[

∂

∂θ
cθ(τi)]

Here,

∂

∂θ
log(Z) =

1

Z

∂

∂θ

∫
exp(cθ(τ))q(τ)dτ =

∫
1

Z
exp(cθ(τ))q(τ)

∂

∂θ
exp(cθ(τ))dτ

=

∫
∂

∂θ
exp(cθ(τ))P (τ ; θ)dτ = EP (τ ;θ)[

∂

∂θ
cθ(τi)]

For the expectation term, we approximate it by sampling through multiple methods.

∂

∂θ
l(θ) =

1

n

∑ ∂

∂θ
cθ(τi)−

1

ñ

∑ ∂

∂θ
cθ(τ̃i)

where τ̃ is the sampled trajectories and ñ is the number of samples.

4.1 Min-max Analysis

We now show that the training procedure can be interpreted as a min-max game. [12] Rewrite the
deviation into,

∂

∂θ
l(θ) =

∂

∂θ

[
1

n

∑
Eθ(τi)−

1

ñ

∑
Eθ(τ̃i)

]
Let,

Vθ(τ̃) =
1

n

∑
Eθ(τi)−

1

ñ

∑
Eθ(τ̃i)

be the value function. Hence, taking gradient of V is equivalent to taking gradient of the likelihood
function.

The learning step attempts to increase the value Vθ(τ̃) by updating theta and shifting the mode. It
shifts the low energy mode from the synthesized trajectories {τ̃i} toward the expert trajectories
{τi}.
The sampling step attempts to decrease the value Vθ(τ̃) by selecting τ and seeking the mode. We
sample to find the trajectories around the current local mode.

As a result, our training process is to find,

θ = arg min
θ

max τ̃Vθ(τ̃)
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4.2 Sampling Algorithm

The state in our model can be divided into two part, vehicle status xv and environment xe.
Modifying control will change status but not the environment. We sample our trajectories based on
input environment. For each expert trajectory with environment, we synthesis one trajectory based
on its environment. In other world, we sample a conditional distribution with fixed environment
and maximum the conditional likelihood,

l(θ) =
1

n

N∑
i=1

logP (τi|Xei = xe; θ)

The sampling algorithm will only update the control, which lead to a change toward vehicle status
xv.

We experiment with two sampling methods. The first one is a deterministic method, iterative
Linear Quadratic Regulation and second one is a MCMC based method, Langevin Dynamic.

4.2.1 Iterative Linear Quadratic Regulation

Iterative Linear Quadratic Regulation (iLQR) is a variant of Differential dynamic programming
(DDP) [14] [15]. Given an initial trajectory, it updates the trajectory by repeatedly solving for the
optimal policy under linear quadratic assumptions.

Let (xit, u
i
t) be the i-th iteration trajectory. The dynamic is known, xit+1 = f(xit, u

i
t). Define

∆xt = xt+1 − xt,∆ut = ut+1 − ut, then,

∆xt+1 ≈ fxt∆xt + fut∆ut

Cθ(xt, ut) ≈ ∆xtcxt + ∆utcut +
1

2
∆xtcxxt∆xt +

1

2
∆utcut∆ut + ∆utcuxt∆xt + Cθ(xt−1, ut−1)

where the subscripts denote the Jacobians and Hessians of the dynamic f and cost function C.

iLQR recursively calculates the Q-function from the tail of the trajectory to the head,

Qxxt = rxxt + fxtVxxt+1fxt
Quut = ruut + futVxxt+1fut
Quxt = ruxt + futVxxt+1fxt
Qxt = rxt + fxtVxt+1

Qut = rut + futVxt+1

Then we calculate V and K by,

Vxxt = Qxxt −QuxtQ
−1
uutQuxt

Vxt = Qxt −QuxtQ
−1
uutQut

kt = −Q−1uutQut

Kt = −Q−1uutQuxt
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Finally they are used to update the (i+1)-th trajectory by given the ith trajectory.

xi+1
0 = xi0
ui+1
t = uit + kt +Kt(x

i+1
t − xit)

xi+1
t+1 = f(xi+1

t , ui+1
t )

After several iterations, the trajectory converges to the current local optimal.

4.2.2 Langevin Dynamic

Another sampling method we tried is Langevin Dynamic, which is a Markov Chaine Monte Carlo
(MCMC) based method. The iterative function is,

Uτ+1 = Uτ −
δ2

2

[
Uτ
ω2
− ∂

∂U
Cθ(Uτ )

]
+ δNoiseτ

The Langevin dynamics consists of a deterministic part, which is the gradient descent for control
u, and a stochastic part, which is a Brownian motion that helps the chain to escape spurious local
minima.

For each sampling squence, we sample exactly one trajectory.

Notice that the state changes as the control is changed; at the same time, the change of control in
the previous frame affects each cost later. Thus the derivative is calculate with chain rule.

∂

∂ui
Cθ(Uτ ) =

T∑
i=0

∂Ci
∂ut

=
T∑
i=t

∂Ci
∂ut

=
T∑
i=t

∂Ci
∂xi

∂xt
∂ut

i−1∏
j=t

∂xj+1

∂xj
+
∂Ct
∂ut

We can also use gradient descent to find the local mode of the energy function by eliminating the
Brownian motion term in Langevin Dynamic.

Uτ+1 = Uτ −
δ2

2

[
Uτ
ω2
− ∂

∂U
Cθ(Uτ )

]
4.3 Algorithm Flow

The training algorithm of energy-based model is presented as follows,

5 Cost Function

5.1 Rule-based Cost Function

Typically, the final cost function for a trajectory is defined as the sum of the cost for each frame
with a state-control pair,

Costθ(τ) =
∑

(x,u)∈τ

Costθ(x, u)
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Algorithm 1 Inverse Optimal Control by EBM
1: input expert trajectories τi
2: output the cost function parameter θ, the synthesized trajectories.
3: Let t← 0, initialize θ
4: repeat
5: Mode Seeking: Use current cost function to synthesis trajectories by iLQR or Langevin

Dynamic
6: Mode shifting: Use synthesis trajectories to update θbyθ(t+1) = θ(t) + γL′(θ(t))
7: t← t + 1
8: until t = T

For rule-based cost function, we design multiple features and combine them linearly to obtain the
final cost function. IOC is used to learn the linear weight for each feature cost.

Costθ(x, u) =
K∑
k=1

θkfk(x, u)

where fk(x, u) is hand-crafted based on human expertise. See appendix for detailed settings.

5.2 Neural Network Designs

Neural network is add to each frame besides the rule-based function. Three different network
structures are designed and compared in the experiments.

The first one is ’NN use parameter’. Instead of linearly combining J functional costs, we input
the feature costs into a 2 layer fully-connected neural network and use the output as the final cost.
Basically, it is a non-linear combination of the human defined features.

The second one is ’NN as residual’. We feed the raw data into a two layer fully-connected neural
network and output a scaler. The final cost is then the sum of the scaler ouput and the original
CIOC cost. In this design, neural network works as a residual to correct the cost, so it does not
affect the result by much.

The third one is ’NN as residual to each’. The build is similar to ’NN as residual’, yet we output
the J scalers corresponding to J features rather than one single scalar. The J scalers are added to
each rule-based feature as residual and output the linear combination. The experiments indicates
that this method may distract the human defined features and decrease the accuracy.

Figure 1 shows the network structure. The red block stands the human defined feature and the
blue block is neural network layer. We simply use fully connect layers.

5.3 Convolution Neural Network Setting

To use some DDP (differential dynamic programming) method include iLQR. We need the
cost function for each state. However, use Langevin dynamic do not need this constrain. We
established a convolution neural network to connect the temporal information between states. That
is, Costτ = F (X,U |θ), where F is a fully-convolution neural network. The input of F will be the
single frame cost. Figure 2 shows the structure of the CNN.
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Figure 1: (a) rule-based method (b) NN use parameter (c) NN as residual (d) NN as residual to
each

Figure 2: CNN structure

6 Experiments

We implement trajectory planning for experiment.

6.1 Dataset

We use a preprocessed dataset from ISee Inc car recording. The data includes the car status and
environment status. Car status include 8 scalers: longitude, latitude, length of car, width of car,
height of car, angle, velocity of long., velocity of lat. For ego car, the control is provided by two
scalers: the steering and acceleration. Environment status include all lane provided by position
list. One problem of this data is the GPS signal has noise. Kalman filter is used to denoise the
data. We use rollout data as both training data and testing data. The number of expert trajectories
is 1631. The length of trajectories is 30 frames.

Figure 3 shows a typical trajectory include environment data. The blue and green dots are ground
truth data for ego vehicle and other vehicles; the yellow and orange dots are smoothed trajectory
for ego and other vehicles; the red and purple dots are the lane center they are driving.

6.2 Evaluation

We calculate the L2-error and likelihood between predicted trajectory and ground truth. Since the
trajectory position based on GPS has noise while the control is based on internal sensor which is
much more precise, we use control to rollout the denoised trajectory as the ground truth.
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Figure 3: Typical trajectory

Assume τ1 = [(x11, y11), ..., (x1n, y1n)], τ2 = [(x21, y21), ..., (x2n, y2n)], the l2-error for i-th
position is defined as,

Err(τ1, τ2, i) = (x11 − x21)
2 + (x12 − x22)

2

The likelihood is defined as,

L(τ1, τ2) =
T∏
i=1

φ(x1i;x2i, 1)φ(y1i; y2i, 1)

φ(x2i;x2i, 1)φ(y2i; y2i, 1)

where φ(a;µ, σ) means the probability for a under gaussian distribution where its mean and
standard deviation is µ and σ.

Result with prefect prediction has zero l2-error and likelihood of 1. l2-error is the small the better
while likelihood is the bigger the better.

6.3 Methods Comparison

Figure 4: Predicted Trajectory

We first evaluate different inverse optimal control algorithm and different sampling methods. The
Continuous Inverse Optimal Control (CIOC) is used for baseline. By using simple model-based
cost function without Neural Network, we compare the likelihood result and l2-error result. A
typical prediction result is shown in figure 4. We can see that most of the trajectory can be
predicted perfectly. A small number of trajectories are not. We called them the corner case. We
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Figure 5: Comparing different methods (Upper-left : Baseline CIOC, Upper-right : iLQR, Bottom-
left : Langevin Dynamic, Bottom-right : Gradient Descent)

Table 1: Comparison result using different algorithm with rule-based cost function

Method CIOC iLQR Langevin Gradient Half Langevin
Training Likelihood 0.796 0.807 0.816 0.815 0.814
Testing Likelihood 0.837 0.815 0.848 0.849 0.850
Training L2-error 1.16 / 1.849 1.901 1.870
Testing L2-error 0.47 / 0.321 0.328 0.328

found for most of the method, there is no big difference for those good result. Only the corner
case can show a result is good or not. We are planning to find more corner case to test.

Due to the limit number of data, the number of corner case is slightly small. As a result, it makes
abnormal result that the testing result is better than training result. However, it is still comparable.
We set the same random seed making it to have the same training set and testing set. By analysis
the predicted trajectory, we do see that better likelihood lead to better prediction in corner case.

Result shows that our method is better. More importantly, it is more stable than the COIC method.
Figure 5 shows the training curve showing that CIOC method is not stable enough. For both
Langevin Dynamic and gradient descent method got the similar result. ’Half Langevin’ stands the
sampling step is Langevin dynamic for first half iteration and gradient descent for the remaining.

6.4 Cost Function Comparison

We then compare the result for different cost function setting. Here we provided the result using
Langevin Dynamic, which got the best performance in previous comparison.
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Table 2: Comparison result using Langevin Dynamic with different cost function setting

Method NN use parameter NN as residual NN as residual to each CNN
Training Likelihood 0.813 0.816 0.808 0.834
Testing Likelihood 0.855 0.850 0.832 0.873
Training L2-error 1.684 1.367 1.157 1.240
Testing L2-error 0.380 0.399 0.415 0.258

Result shows that the CNN setting got the best result. There is a considerable increase in accuracy.
IT shows that the connection between multiple frame is important for cost function. We believe
a more complex net will handle better result. However, we found that training CNN setting
is unstable. Due to the complex setting of cost function, the distribution of trajectory become
unsmooth. It makes harder to sample and learn. Figure 6 shows the CNN accuracy in different
epoch. Actually, if we set a bigger learning rate, the model will output NaN and making the
control to all zero.

For other setting of neural network. We found there is a small promotion in NN use parameter
setting, while the NN as residual to each setting decrease the result. Through this experiment, we
show that the deep neural network does construct a better cost function. Meanwhile, we show our
energy-based model method can handle the neural network setting.

Figure 6: Cost function structure comparsion (left : NN use parameter, right : CNN)

6.5 Simulation

We use ROS to simulate our algorithm, the simulator is provided by Isee Inc. Only rule-based
method is tested on simulator. In the simulation, our ego vehicle is able to follow lanes and avoid
collisions. Figure 7 is a snapshot of the simulator. (*The snapshot is not runned in our method,
but just a sample.)

The white box in the middle is our ego car. The pink dots in front of the ego car is the predicted
trajectories. The green lines are lanes provided by the simulator and the hollow box are other
vehicles.

7 Discussion and Future Work

In this paper, we implemented continuous IOC with energy-based model. In comparison to
CIOC, our method with Langevin Dynamic sampling is proven to achieve a better result with
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Figure 7: Simulation Result

higher stability. In future works, we plan to do more comparitive experiments with other methods
including Guided cost learning and GAIL.

We designed multiple structures of neural network as an add-on to the cost function. The neural
network, especially convolutional neural network, greatly improves the prediction in experiments.
However, it also introduces unstability to the training. Therefore, our method is not likely to find
the global minimum in a higher dimensional space. As a next step, we plan to synthesize more
trajectories per epoch and collect more data for training.

Energy-based model is very promising for inverse optimal control, because as a descriptive model
it represents the whole trajectory distribution in theory. We believe it can also be extended to
multi-agent situations .

In autonomous driving, there are different moving objects including other vehicles, pedestrians
and other moving. Currently, we only predict their trajectories individually, while their interactions
are neglected, e.g., the car behind should decelerate when the front one decelerates. Therefore,
multi-agent planning is a direction to be explored. One possible implementation is to calculate the
joint trajectory distribution for the moving agents and sample the multiple trajectories at the same
time. Assume we have K agents and each of them has a trajectory τi, then,

P (τ1, ..., τK |θ) =
1

Z
e
∑K
i=0 Cθ(τi)

The cost function of each agents share the same parameters. Notice that the cost function for one
vehicle is dependent on the information of the others.

Another direction could be Partially Observable MDP (POMDP). We regard other vehicle’s
intension as part of an unobserved state, and use POMDP setting to infer their intension.

Our future research will focus on various generalization of energy-based model and its variants,
with the belief that it has great potential in the field of optimal control and reinforcement learning.
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A Details on Rule-based Function

Firstly, we define raw input R as a 37-dimension vector which is,

• 0:6 : status for ego vehicle (x, y position, angle, speed, delta angle, delta speed)

• 8:12 : lane coefficient which represent the lane shape

• 12:32 : other vehicle * 5 (x, y, angle, speed)

• 32:36 : goal state which is a position in front of the ego vehicle

• 36 : speed limit

10 functioned cost defined in CIOC are,

• 0:2 : Goal cost (x, y)

• 2:4 : L2 norm for control

• 4:6 : L2 norm for delta control

• 6 : Obstacle : if the distance from ego vehicle to obstacle is samll, there is a cube penalty

• 7 : speed limit

• 8 : direction compare to lane direction

• 9 : distance to lane center.
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